什么是实数,有理数,整数举几个例子出来就OK不要太复杂的

1个回答

  • 整数:自然数 (例如 1、2、3)、负的自然数 (例如 1、?2、?3) 与零合起来统称为整数.

    有理数:数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数.希腊文称为 λογο?,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”.不是有理数的实数遂称为无理数.有理数的小数部分有限或为循环.

    实数:数学上,实数直观地定义为和数线上的点一一对应的数.本来实数只唤作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”.实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类.实数集合通常用字母 R 或 表示.而 Rn 表示 n 维实数空间.实数是不可数的.实数是实分析的核心研究对象.实数可以用来测量连续的量.理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的).在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数).