本题考察的是等差中项的概念.
因为数列{an}是等差数列,因此:
a1+a2+a3=(a1+a3)+a2=2a2+a2=3a2=12
∴a2=4
设该等差数列的公差为d,则:
d=a2-a1=4-2=2
因此:
an=a1+(n-1)d=2+2(n-1)*2=2n
bn=an*3^n=(2n)*(3^n)
令数列{bn}的前n项和为Sn,则:
Sn =2*3+4*3²+6*3³+.+(2n)*(3^n).(1)
(1)×3,得:
3Sn= 2*3²+4*3³+6*3^4+.+(2n)*[3^(n+1)].(2)
(1)-(2),得:
-2Sn=2*3+2*3²+2*3³+2*3^4+2*(3^n) - (2n)*[3^(n+1)]
-2Sn=2(3+3²+.+3^n) - (2n)*[3^(n+1)]
-2Sn==2*[3(3^n-1)/2] - (2n)*[3^(n+1)]
Sn=n*[3^(n+1)] - (3/2)(3^n-1)
∴
Sn=3/2 +(n-1/2)*[3^(n+1)]