1.(sinA+cosB)^2=sinA^2+cosB^2+2sinAcosB
(cosA+sinB)^2=cosA^2+sinB^2+2cosAsinB
2≤(sinA+cosB)^2+(cosA+sinB)^2≤4
sinA^2+cosA^2+sinB^2+cosB^2=2
sinAcosB=0.5
-1≤cosAsinB≤1
2.(sinA+sinB)^2=sinA^2+sinB^2+2sinAsinB=1
(cosA+cosB)^2=cosA^2+cosB^2+2cosAcosB
2≤(sinA+sinB)^2+(cosA+cosB)^2≤4
1≤cosA+cosB≤√3
3.y=(1+sin2B)/(sinB+cosB)
=(sinB^2+cosB^2+2sinBcosB)/(sinB+cosB)
=(sinB+cosB)^2/(sinB+cosB)
=(sinB+cosB)
1≤sinB+cosB≤√2
1≤y≤√2