1.取对数:
lnz=(x+y)ln(x-y)
对x求导:z'x/z=ln(x-y)+(x+y)/(x-y), 得:z'x=z[ln(x-y)+(x+y)/(x-y)]
对y求导:z'y/z=ln(x-y)-(x+y)/(x-y),得:z'y=z[ln(x-y)-(x+y)/(x-y)]
2. 令u=xy,v=xyz
则w=f(x, u, v)
w'x=f'x+f'u*u'x+f'v*v'x=f'x+f'u*y+f'v*yz
w'y=f'y+f'u*u'y+f'v*v'y=f'y+f'u*x+f'v*xz