三角形ABC中,bcosC=ccosB,若tanA=-2倍根号2,求sin(4B+π/3)的值

1个回答

  • 跟据正弦定理,

    b/sinB = c/sinC

    得:b/c = sinB/sinC

    已知:bcosC=ccosB

    得:b/c = cosB/cosC

    两式相等,得:sinB/sinC = cosB/cosC

    sinBcosC = cosBsinC

    sinBcosC - cosBsinC = 0

    sin(B - C) = 0

    所以B - C = 0 (A,B,C不超於180度)

    得B = C

    且A + B + C = 180°

    所以A + B + B = 180°

    A = 180° - 2B

    代入tanA = -2√2

    tan(180° - 2B) = -2√2

    -tan2B = -2√2

    tan2B = 2√2

    利用万能公式,

    得:sin4B = 2tan2B/(1 + tan²2B)

    = 2 * 2√2/[1 + (-2√2)²]

    = 4√2/9

    cos4B = (1 - tan²2B)/(1 + tan²2B)

    = [1 - (2√2)²]/[1 + (2√2)²]

    = -7/9

    所求:sin(4B + π/3)

    = sin4Bcosπ/3 + cos4Bsinπ/3

    = (4√2/9)*(1/2) + (-7/9)/(√3/2)

    = (4√2 - 7√3)/18