(1+x)(1+x^2)(1+x^4)…(1+x^2^n)n
=(1-x)(1+x)(1+x^2)(1+x^4)...(1+x^2^n)/(1-x)
=(1-x^2)(1+x^2)(1+x^4)...(1+x^2^n)/(1-x)
=(1-x^2(n+1))/(1-x)
lim(n->∞)[(1+x)(1+x^2)(1+x^4)…(1+x^2^n)n]
=lim(n->∞)[(1-x^2(n+1))/(1-x)]
=1/(1-x)
(1+x)(1+x^2)(1+x^4)…(1+x^2^n)n
=(1-x)(1+x)(1+x^2)(1+x^4)...(1+x^2^n)/(1-x)
=(1-x^2)(1+x^2)(1+x^4)...(1+x^2^n)/(1-x)
=(1-x^2(n+1))/(1-x)
lim(n->∞)[(1+x)(1+x^2)(1+x^4)…(1+x^2^n)n]
=lim(n->∞)[(1-x^2(n+1))/(1-x)]
=1/(1-x)