数列各项均为正,则首项a1>0,公比q>0
(a1+a4)-(a2+a3)
=a1(1+q³)-a1(q+q²)
=a1(q³-q²-q+1)
=a1[q²(q-1)-(q-1)]
=a1(q-1)(q²-1)
=a1(q-1)²(q+1)
a1>0,q>0 q+1>0 (q-1)²恒非负,因此a1(q-1)²(q+1)≥0
a1+a4≥a2+a3 (当且仅当q=1时取等号,此时数列是公比为1的等比数列,即数列各项均相等).
数列各项均为正,则首项a1>0,公比q>0
(a1+a4)-(a2+a3)
=a1(1+q³)-a1(q+q²)
=a1(q³-q²-q+1)
=a1[q²(q-1)-(q-1)]
=a1(q-1)(q²-1)
=a1(q-1)²(q+1)
a1>0,q>0 q+1>0 (q-1)²恒非负,因此a1(q-1)²(q+1)≥0
a1+a4≥a2+a3 (当且仅当q=1时取等号,此时数列是公比为1的等比数列,即数列各项均相等).