|m+4|与n^2-2n+1互为相反数
|m+4|>("=")0
n^2-2n+1=(n-1)^2>("=")0
所以|m+4|=0 m=-4
n^2-2n+1=0 n=1
(x^2+4y^2)-(mxy+n)=(x^2+4y^2)-(-4xy+1)=
(x+2y)^2-1=(x+2y+1)(x+2y-1)
("=")0所以|m+4|=0 m=-4n^2-2n+" property="og:description"/>
|m+4|与n^2-2n+1互为相反数
|m+4|>("=")0
n^2-2n+1=(n-1)^2>("=")0
所以|m+4|=0 m=-4
n^2-2n+1=0 n=1
(x^2+4y^2)-(mxy+n)=(x^2+4y^2)-(-4xy+1)=
(x+2y)^2-1=(x+2y+1)(x+2y-1)