若 S n = 1 1•2 + 1 2•3 + 1 3•4 …+ 1 n•(n+1) (n∈ N * ) ,则S 10
1个回答
∵ S n =
1
1•2 +
1
2•3 +
1
3•4 +…+
1
n(n+1)
= 1-
1
2 +
1
2 -
1
3 +…+
1
n -
1
n+1
= 1-
1
n+1 =
n
n+1
∴ S 10 =
10
11
故选C.
相关问题
n=1 s=1 n=2 s=3 n=3 s=6 n=4 s=10
设S=1+2+3+...+n,则S=n+(n-1)+(n-2)+...+1.由上得2S =(n+1)+(n+1)+(n+
设S(n)=1/n+1/n+1+1/n+2+1/n+3+……1/n^2 当n=2时,S(2)
设S=1·1!+2·2!+3·3!+…+n·n!则S=?
N 1 2 3 4 5 …… S 1 3 6 10 15 …… 如上是个表格,若n=10,S=?当N=N时,S=?
求和:S=1·2·3+2·3·4+……+n(n+1)(n+2)
已知数列{a n }的前n项和为S n ,若S 1 =1,S 2 =2,且S n+1 -3S n +2S n-1 =0(
数列{An}满足a(1)=1,a(2)=6,S(n)=3S(n-1)-2S(n-2)+2^n(n>=3)
找规律 1 4 12 32n=1 s=1 n=2.s=4 n=3 s=12 n=4.s=32 求n时,s=?
n=2,s=1 n=3,s=3 n=4,s=6 n=5,s=10 n=6,s=15找规律