用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b
1个回答
这个是用柯西中值定理证明的,令g(x)=lnx,则由柯西中值定理有
[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ),然后把g代入就行了
相关问题
设f(x)可导,且f(a)=f(b) 证明存在ξ∈ (a,b) 使f(a)-f(ξ )=ξ f'(x)
f(x)在[a,b]上连续,在(a,b)可导,试证明∃ξ∈(a,b)使得2ξ[f(a)-f(b)]=(b^2
设f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(ξ)−f(a)b−ξ=f′(ξ
定积分证明设f(x)在〔a,b〕上连续,证明必存在ξ∈(a,b)使得(ξ-b)f(ξ)+∮(a,ξ)f(x)dx=0
求证一道高数题f(x)在(a,b)上连续可导且f(a)=0,求证f(ξ)=(b-ξ)f'(ξ)/a
设f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:至少存在一点ξ∈(a,b),使得f(ξ)=ξ.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'
设f(x)∈C[a,b],在(a,b)内二阶可导,ξ∈(a,b),f″(ξ)>0.
设函数f(x)在[a,b]上连续,在(a,b)内可导,f(a)=0,证明:对于正整数n,存在ξ属于(a,b),使f(ξ)
f(b)-f(a)=f'(ξ)*(b-a) ξ∈[a,b] ,f‘(ξ)是什么的导数?