∵x+3/x+2=1/√3+√2+1 ,
∴X+2/x+3=√3+√2+1 ,
即[(x+3)-1)/(x+3)==√3+√2+1
∴-1/(x+3)=√3+√2
x-3/2x-4÷(5/x-2 -x-2)
=(x-3)/2(x-2)÷(9-x^2)/(x-2)
=(x-3)/2(x-2)*(x-2)/(3+x)(3-x)
=-1/2*1/(x+3)
=(√3+√2)/2
∵x+3/x+2=1/√3+√2+1 ,
∴X+2/x+3=√3+√2+1 ,
即[(x+3)-1)/(x+3)==√3+√2+1
∴-1/(x+3)=√3+√2
x-3/2x-4÷(5/x-2 -x-2)
=(x-3)/2(x-2)÷(9-x^2)/(x-2)
=(x-3)/2(x-2)*(x-2)/(3+x)(3-x)
=-1/2*1/(x+3)
=(√3+√2)/2