对y-x*e^y=1求导,得
y'-e^y-xe^y*y'=0,
∴(1-xe^y)y'=e^y,
∴y'=e^y/(1-xe^y),
∴y''=[e^y*y'*(1-xe^y)-e^y*(-e^y-xe^y*y')]/(1-xe^y)^2
={y'[e^y-xe^(2y)+xe^(2y)]+e^(2y)}/(1-xe^y)^2
=[e^(2y)/(1-xe^y)+e^(2y)]/(1-xe^y)^2
=[2e^(2y)-xe^(3y)]/(1-xe^y)^3.
对y-x*e^y=1求导,得
y'-e^y-xe^y*y'=0,
∴(1-xe^y)y'=e^y,
∴y'=e^y/(1-xe^y),
∴y''=[e^y*y'*(1-xe^y)-e^y*(-e^y-xe^y*y')]/(1-xe^y)^2
={y'[e^y-xe^(2y)+xe^(2y)]+e^(2y)}/(1-xe^y)^2
=[e^(2y)/(1-xe^y)+e^(2y)]/(1-xe^y)^2
=[2e^(2y)-xe^(3y)]/(1-xe^y)^3.