解题思路:(1)连接OD,由OB=OD和角平分线性质得出∠ODB=∠DBC.推出OD∥BC,得出∠ODC=90°,根据切线的判定推出即可;
(2)由平行线得出△ADO∽△ACB,推出比例式,代入求出即可.
(1)证明:∵DE⊥DB,⊙O是Rt△BDE的外接圆,
∴BE是⊙O的直径,点O是BE的中点,
连接OD.
∵OB=OD,
∴∠ABD=∠ODB.
∵BD为∠ABC的平分线,
∴∠ABD=∠DBC.
∴∠ODB=∠DBC.
∴OD∥BC,
∵∠C=90°,
∴∠ADO=∠C=90°.
∵OD是半径,
∴AC是⊙O的切线;
(2)在Rt△ABC中,AB=
AC2+BC2=15,
∵OD∥BC,
∴△ADO∽△ACB,
∴[AO/AB]=[OD/BC],
∴[15−r/15]=[r/9],
解得:r=[45/8].
点评:
本题考点: 切线的判定;勾股定理;相似三角形的判定与性质.
考点点评: 本题考查了切线的判定和相似三角形的性质和判定,解(1)的关键是求出∠ODC=90°,解(2)的关键是得出关于r的方程.