线性方程组λx1+x2+x3=λ-3 x1+λx2+x3=-2 x1+x2+λx3=-2

1个回答

  • 由题目可知 λx1+x2+x3=λ-3-------------------------(1) x1+λx2+x3=-2--------------------------(2)

    x1+x2+λx3=-2--------------------------(3)

    (1)-λ*(2),

    x2-λ^2 x2+x3-λx3=λ-3-2λ---------------(4)

    (1)-λ*(3)

    x2-λ x2+x3-λ^2x3=λ-3-2λ---------------(5)

    从(4),

    x2(1-λ^2)+x3(1-λ)=x2(1-λ)(1+λ)+x3(1-λ)=-3-λ-----------(6)

    从(5),

    x2(1-λ)+x3(1-λ^2)=-3-λ--------------------------------(7)

    从(6),(7),

    x3(1-λ)[1+(1+λ)^2]=-(λ+3)(1+λ)

    设λ≠1,

    x3=-(λ+3)(1+λ)/{(1-λ)[2+2λ+λ^2]}----------------(8)

    从(5),(8)

    x2=[-3-λ-x3(1-λ^2)]/(1-λ)----------------------------(9)

    从(2),(8),(9),

    x1=-λx2-x3-2---------------------------------------------(10)

    方程组通解:(8),(9),(10)

    考虑有唯一解:

    系数行列式H=(λ+2)(λ-1)^2.

    ∴λ≠-2且λ≠1时,方程组有唯一解.

    λ=-2时,三个方程相加(1)+(2)+(3)得0=-5-2-2,矛盾,方程组无解.

    λ=1时,三个方程相同,(1)=(2)=(3),都是x1+x2+x3=-2,方程组有无穷多解.

    (引自 wong6764 )