(x2-1)sinB-(x2-x)sinC-(x-1)sinA=0
(x-1)[(x+1)sinB-xsinC-sinA]=0
所以方程有二个相等的根是:x=1
所以:2sinB-sinC-sinA=0,即:sinA+sinC=2sinB
又根据:a/sinA=b/sinB=c/sinC
得:a+c=2b,即三角形的三边成等差数列.
(x2-1)sinB-(x2-x)sinC-(x-1)sinA=0
(x-1)[(x+1)sinB-xsinC-sinA]=0
所以方程有二个相等的根是:x=1
所以:2sinB-sinC-sinA=0,即:sinA+sinC=2sinB
又根据:a/sinA=b/sinB=c/sinC
得:a+c=2b,即三角形的三边成等差数列.