解题思路:根据一元二次方程根的判别式结合根与系数的关系解答.
答:错误之处在于方程x2-mx+2m-1=0中,a=1,b=-m,x1+x2=m.
运用两根关系解得答案时,没有代入方程的判别式检验.
由根与系数的关系,得x1+x2=m,x1x2=2m-1.
由题意,得x12+x22=23.
又x12+x22=(x1+x2)2-2x1x2.
∴m2-2(2m-1)=23.
解之,得m1=7,m2=-3.
所以,m的值为7或-3.
当m=7时,△=(-m)2-4(2m-1)
=(-7)2-4(2×7-1)
=-1<0,方程无实根.
当m=-3时,△=(-m)2-4(2m-1)
=(3)2-4[2×(-3)-1]
=37>0,方程有两个不相等的实数根实根.
∴m=-3.
点评:
本题考点: 根与系数的关系;根的判别式.
考点点评: 此类题目是中学阶段常规题目,此类题目在根据根与系数的关系解得答案时要代入原方程的判别式进行检验.