第一个是3根号3.第二个9根号3.方法结合用余弦定理,双曲线定义,及角边面积公式.
设有双曲线x^2/4-y^2/9=1,F1,F2是其两个焦点,点M在双曲线上.若∠F1MF2=120°,△F1MF2的面
2个回答
相关问题
-
1.已知双曲线x^2/4-y^2/9=1,F1,F2是其两个焦点,点M在双曲线上,若∠F1MF2=90°,求△F1MF2
-
已知F1,F2是双曲线x^2/9-y^2/16=1的两焦点,点M在双曲线上,如果向量MF1⊥向量MF2,求△MF2F1的
-
已知双曲线X²/9 - Y²/16=1两个焦点F1;取双曲线上点M、使MF1垂直MF2\则三角MF1
-
已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0
-
已知双曲线两焦点是F1(-√10,0)F2(√10,0)M是双曲线上的点,且向量MF1*x向量MF2=0,|MF1|*|
-
F1,F2为双曲线y²-x²/9=1的上下焦点,M为其上一点,若MF1⊥MF2,则M到x轴的距离为
-
设椭圆x^2/25+y^2/9=1,f1,f2是其两个焦点,点M在椭圆上,若∠f1mf2=o,试讲△f1mf2的面积表示
-
双曲线 1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离2,在
-
已知双曲线x-y/2=1的焦点F1F2,点M在双曲线上且向量MF1乘向量MF2=0求点M到x轴的距离
-
已知F1,F2为双曲线x^2-y^2/2=1的焦点,点M在双曲线上,且向量MF1点乘向量MF2=0,则点M的纵坐标为