∵EF垂直平分BC,
∴CF=BF,BE=CE,∠BDE=90°,BD=CD,
又∵∠ACB=90°,
∴EF∥AC,
∴△BDE∽△BCA,
∴BE:AB=DB:BC,
∵D为BC中点,
∴DB:BC=1:2,
∴BE:AB=1:2,
∴E为AB中点,
即BE=AE,
∵CF=AE,
∴CF=BE,
∴CF=FB=BE=CE,
∴四边形BECF是菱形.
当∠A=45°时,菱形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠CBA=45°,
∴∠EBF=2∠A=90°,
∴菱形BECF是正方形