大学数学专业解析几何书上有定理说任意一个n次齐次方程都表示一个顶点在原点的锥面,那么反过来任意一个顶点在原点的锥面方程是

1个回答

  • 锥面方程的齐次性定理是空间解析几何中的重要定理,它断言顶点在原点的锥面方程是一个关于x、y、z的齐次方程,但是直至1984年,还未出现一个令人信服的证明,因为几乎所有证明均依赖于锥面必存在平面准线这一错误结论,1985年安道明在[1]中给出一个严格的证明,他用一球面截锥面的截线作为准线来实现其证明,并把定理修正为: 定理:顶点在原点的锥面方程必为一个关于x、y、z的齐次方程或与这个齐次方程同解的方程.