设a^x=t,则有
y=t(t-3a²-1)=[t²-(3a²+1)t+(3a²+1)²/4]-(3a²+1)²/4
=[t-(3a²+1)/2]²-(3a²+1)²/4
当t≥(3a²+1)/2,f(x)单调递增.
即a^x≥(3a²+1)/2
即xlna≥ln(3a²+1)-ln2
即x≥[ln(3a²+1)-ln2]/lna
∵x∈[0,+∞)
∴[ln(3a²+1)-ln2]/lna≤0
当a>1时,lna>0
即有3a²+1≤2,解得-√3/3≤a≤√3/3(略去)
当0
设a^x=t,则有
y=t(t-3a²-1)=[t²-(3a²+1)t+(3a²+1)²/4]-(3a²+1)²/4
=[t-(3a²+1)/2]²-(3a²+1)²/4
当t≥(3a²+1)/2,f(x)单调递增.
即a^x≥(3a²+1)/2
即xlna≥ln(3a²+1)-ln2
即x≥[ln(3a²+1)-ln2]/lna
∵x∈[0,+∞)
∴[ln(3a²+1)-ln2]/lna≤0
当a>1时,lna>0
即有3a²+1≤2,解得-√3/3≤a≤√3/3(略去)
当0