1.∫x㏑(x²+1)dx =(1/2)∫㏑(x²+1)d(x²+1) (分部积分)
=(1/2)(x²+1)ln(x²+1)-(1/2)∫(x²+1)d㏑(x²+1)
=(1/2)(x²+1)ln(x²+1)-(1/2)∫d(x²+1)
=(1/2)(x²+1)ln(x²+1)-(1/2)(x²+1)+C
2.∫(arcsinx)²dx =x(arcsinx)²-∫xd(arcsinx)² (分部积分)
=x(arcsinx)²-∫2xarcsinx*(1/(√1-x²)dx
=x(arcsinx)²+∫2arcsinx*d(√1-x²) (分部积分)
=x(arcsinx)²+2(√1-x²)*arcsinx-2∫(√1-x²)darcsinx
= x(arcsinx)²+2(√1-x²)*arcsinx-2x+C