因为在锐角三角形里有tanA+tanB+tanC=tanAtanBtanC
证明之
∵tan(A+B)=tanA+tanB/1-tanA*tanB
tan(A+B)=tan(π-C)=-tanC
∴tanA+tanB/1-tanA*tanB=-tanC
整理移项即得
tanA+tanB+tanC=tanA*tanB*tanC
而在锐角三角形中三个正切都是正值,所以
tanA+tanB+tanC=tanAtanBtanC>=3(tanAtanBtanC)^(1/3)
所以得到tanAtanBtanC>=3√3
所以tanAtanBtanC必大于1