解题思路:四个数的最大公约数是能够整除四个数以及四个数和,首先把1111分解质因数,求得最大约数(除本身外),再把另一个约数(或其它约数的积)分解成四个互质的数的和,分别乘以最大约数即可解答.
四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.
将1111作质因数分解,得
1111=11×101
最大公约数不可能是1111,其次最大可能数是101.
若为101,则将这四个数分别除以101,所得商的和应为11.
现有1+2+3+5=11,
即存在着下面四个数
101,101×2,101×3,101×5,
它们的和恰好是
101×(1+2+3+5)=101×11=1111,
它们的最大公约数为101.
所以101为所求.
点评:
本题考点: 公约数与公倍数问题.
考点点评: 此题主要利用求一个数的约数的方法以及几个数的和与它们最大公约数之间的关系,进行分析探讨得出结论.