欧几里德<几何原本>中勾股定理证明详细过程

1个回答

  • 证法5(欧几里得的证法)  《几何原本》中的证明   在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立.设△ABC为一直角三角形,其中A为直角.从A点划一直线至对边,使其垂直于对边上的正方形.此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等.  在正式的证明中,我们需要四个辅助定理如下:  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等.(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半.任意一个正方形的面积等于其二边长的乘积.任意一个四方形的面积等于其二边长的乘积(据辅助定理3).证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形.  其证明如下:  设△ABC为一直角三角形,其直角为CAB.其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH.画出过点A之BD、CE的平行线.此线将分别与BC和DE直角相交于K、L.分别连接CF、AD,形成两个三角形BCF、BDA.∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H.∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC.因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC.因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD.因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC.因此四边形 BDLK 必须有相同的面积 BAGF = AB^2.同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2.把这两个结果相加,AB^2+ AC^2; = BD×BK + KL×KC .由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2.此证明是于欧几里得《几何原本》一书第1.47节所提出的