初一初二的证明题其实仔细想想也不是很难的!现在去复习还来得及的!
给你举个例子!
正方形ABCD中,G是对角线AC上的一点,连接GB,GD,GE垂直于cd于点E,GF垂直于GB,交CD与点F,
求证:(1)ED=EF
(2);CG=√2CF+AG1)
过G作GP垂直于BC于P
可以明显看出四边形GPCE是正方形所以GP=GE,角GPB=角GEF=90=角PGE
因为 角PGE=90,所以角PGF+角FGE=90
因为GF垂直于GB,所以角BGF=90,所以角PGF+角BGP=90
所以角BGP=角FGE
又GP=GE,角GPB=角GEF=90
所以 三角形BGP 全等于 三角形FGE
所以BG=FG
因为ABCD正方形,AC为对角线
所以BC=DC,角BCG=角DCG,CG=CG
所以三角形BCG 全等于 三角形DCG
所以BG=GD
所以GD=FD
又GE垂直于DF于E
所以GE为DF中线,DE=FE
2)过F作FQ垂直于CD,交AC于Q
明显看出,CQ=√2CF
然后,就只用求证AG=GQ
可以看见等腰直角三角形CGE和等腰直角三角形CAD中,CG=√2CE,AC=√2CD
GQ=CG-CQ=√2CE-√2CF=√2(CE-CF)=√2EF
AG=CA-CG=√2DC-√2CFCE=√2(DC-CE)=√2DE
因为EF=DE,所以GQ=AG
所以CG=CQ+GQ=√2CF+AG
还有小学弟(妹),呃.姐姐我也上了高一,过来人!我知道书店有本书很好哈!(不是推销)作者叫王后雄!书上有例题,解析!还有题目!好好加油吧!为自己的理想奋斗哦.(^o^)/~