a>1,b>1,求证:a^2/(b-1)+b^2(a-1)≥8
记x=a-1,y=b-1,那么题目变成x>0,y>0,求证(x+1)^2/y+(y+1)^2/x≥8
即(x+1)^2*x+(y+1)^2*y≥8xy
x^3+2x^2+x+y^3+2y^2+y≥8xy
用均值不等式:(a^2+b^2≥2ab)
因为2x^2+2y^2≥4xy x^3+x≥2x^2 y^3+y≥2y^2
所以x^3+2x^2+x+y^3+2y^2+y≥2x^2+2y^2+4xy ≥8xy
证毕
a>1,b>1,求证:a^2/(b-1)+b^2(a-1)≥8
记x=a-1,y=b-1,那么题目变成x>0,y>0,求证(x+1)^2/y+(y+1)^2/x≥8
即(x+1)^2*x+(y+1)^2*y≥8xy
x^3+2x^2+x+y^3+2y^2+y≥8xy
用均值不等式:(a^2+b^2≥2ab)
因为2x^2+2y^2≥4xy x^3+x≥2x^2 y^3+y≥2y^2
所以x^3+2x^2+x+y^3+2y^2+y≥2x^2+2y^2+4xy ≥8xy
证毕