xy都大于0,x的平方+y的平方/2=1,则x根号下(1+y的平方)的最大值

2个回答

  • x^2+(y^2)/2=1,

    x^2+[(1/√2)y]^2=1,

    设x=cosA,y=√2sinA,

    因x>0,y>0,不妨设0<A<π/2,

    x√(1+y^2)=cosA√[1+2(sinA)^2]

    =√{(cosA)^2[1+2(sinA)^2]}

    =√{[1-(sinA)^2][1+2(sinA)^2]}

    =√[1+(sinA)^2-2(sinA)^4]

    =√{1+(1/√2)[√2(sinA)^2]-[√2(sinA)^2]^2}

    =√{-[√2(sinA)^2-1/(2√2)]^2+[1/(2√2)]^2+1}

    =√{-[√2(sinA)^2-√2/4]^2+9/8}

    =√{-2[(sinA)^2-1/4]^2+9/8}

    =√{-2[(sinA+1/2)(sinA-1/2)]^2+9/8}

    ≤√(9/8)=(3/4)√2

    当sinA=1/2,即x=y=√2/2时,原式取最大值(3/4)√2.