一道关于椭圆定值的问题!(难)椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证:1/O

1个回答

  • 该椭圆方程为

    x^2/a^2+y^2/b^2=1

    可设点A坐标为(acosα,bsinα),B坐标为(acosβ,bsinβ)

    OA垂直OB,所以acosα*acosβ+bsinα*bsinβ=0

    两遍同除cosα*cosβ,得

    a^2+b^2tanα*tanβ=0

    tanβ=-(a^2/(b^2*tanα))

    1/OA^2+1/OB^2

    =1/(a^2(cosα)^2+b^2(sinα)^2) + 1/(a^2(cosβ)^2+b^2(sinβ)^2)

    =((cosα)^2+(sinα)^2)/(a^2(cosα)^2+b^2(sinα)^2) + ((cosβ)^2+(sinβ)^2)/(a^2(cosβ)^2+b^2(sinβ)^2)

    =(1+(tanα)^2)/(a^2+b^2(tanα)^2) + (1+(tanβ)^2)/(a^2+b^2(tanβ)^2)

    =(1+(tanα)^2)/(a^2+b^2(tanα)^2) + (1+((a^2/(b^2tanα)))^2)/(a^2+b^2((a^2/(b^2tanα)))^2)

    =(a^2*b^2+a^2*b^2*(tanα)^2+b^4*(tanα)^2+a^4)/(a^2*b^4*(tanα)^2+b^2*a^4)

    =(a^2+b^2)/(a^2*b^2)

    所以1/OA^2+1/OB^2为定值(a^2+b^2)/(a^2*b^2)