f(x)=2cosx(sinx-cosx)+1.
=2cosxsinx-2cos^2x+1
=sin2x-cos2x
=√2sin(2x-π/4)
所以:f(x)的最小正周期T=2π/2=π
(2)求函数f(x)在区间[π/8,3π/4]上的最小值和最大值
当x属于[π/8,3π/4]时, 有0≤2x-π/4 ≤5π/4
当:x=3π/8时有最大值,为√ 2
当:x=3π/4时有最小值,为,-1
f(x)=2cosx(sinx-cosx)+1.
=2cosxsinx-2cos^2x+1
=sin2x-cos2x
=√2sin(2x-π/4)
所以:f(x)的最小正周期T=2π/2=π
(2)求函数f(x)在区间[π/8,3π/4]上的最小值和最大值
当x属于[π/8,3π/4]时, 有0≤2x-π/4 ≤5π/4
当:x=3π/8时有最大值,为√ 2
当:x=3π/4时有最小值,为,-1