设A,B,C分别表示每局比赛中甲,乙,丙获胜的事件,则 P(A)=P(B)=P(C)=
1
3 .
欲丙成为整场比赛的优胜者,则需在未来的三次中,丙获胜三次;或在前三次中,丙获胜两次乙胜一次,
而第四次为丙获胜.故本题欲求的概率为 p=
3!
3! 0! 0! (
1
3 ) 3 (
1
3 ) 0 (
1
3 ) 0 +
3!
2! 1! 0! (
1
3 ) 2 (
1
3 )(
1
3 ) 0 =
4
27 .
设A,B,C分别表示每局比赛中甲,乙,丙获胜的事件,则 P(A)=P(B)=P(C)=
1
3 .
欲丙成为整场比赛的优胜者,则需在未来的三次中,丙获胜三次;或在前三次中,丙获胜两次乙胜一次,
而第四次为丙获胜.故本题欲求的概率为 p=
3!
3! 0! 0! (
1
3 ) 3 (
1
3 ) 0 (
1
3 ) 0 +
3!
2! 1! 0! (
1
3 ) 2 (
1
3 )(
1
3 ) 0 =
4
27 .