直线X+Y-1=0的平行线与抛物线的切点到直线X+Y-1=0的距离最小,切点处的导数等于直线的斜率.
对抛物线求导得:2yy'=2p => y'=p/y=-1 => y=-p,代入抛物线方程得:x=y²/2p=p/2.所以切点坐标为(p/2,-p).
切点到直线X+Y-1=0的距离d=|p/2-p-1|/√(1²+1²)=3√2/8
解得:p=-1/2或p=-7/2
所以抛物线方程为y²=-x或y²=-7x
直线X+Y-1=0的平行线与抛物线的切点到直线X+Y-1=0的距离最小,切点处的导数等于直线的斜率.
对抛物线求导得:2yy'=2p => y'=p/y=-1 => y=-p,代入抛物线方程得:x=y²/2p=p/2.所以切点坐标为(p/2,-p).
切点到直线X+Y-1=0的距离d=|p/2-p-1|/√(1²+1²)=3√2/8
解得:p=-1/2或p=-7/2
所以抛物线方程为y²=-x或y²=-7x