已知椭圆O为坐标原点,P、Q为椭圆上两动点,且op与OQ垂直,求证1/op^2+1/oq^2=1/a^2+1/b^2

2个回答

  • 设P(x1,y1)Q(x2,y2)

    根据题意y1/x1*y2/x2=-1

    即x1x2+y1y2=0

    设PQ方程:y=kx+m代入椭圆b²x²+a²y²=a²b²

    整理:(a²k²+b²)x²+2kma²x+a²m²-a²b²=0

    韦达定理:x1+x2=-2kma²/(a²k²+b²),x1*x2=(a²m²-a²b²)/(a²k²+b²)

    y1y2=(kx1+m)(kx2+m)=k²x1x2+km(x1+x2)+m²

    x1x2+k²x1x2+km(x1+x2)+m²=0

    (a²m²-a²b²)/(a²k²+b²)+k²(a²m²-a²b²)/(a²k²+b²)-2k²m²a²/(a²k²+b²)+m²=0

    化简:(a²+b²)m²=a²b²(1+k²)

    m²/(1+k²)=a²b²/(a²+b²)

    |m|/√(1+k²)=ab/√(a²+b²)

    点O到直线PQ的距离d=|m|/√(1+k²)=ab/√(a²+b²)为定值

    1/OP²+1/OQ²=(OP²+OQ²)/(OP²*OQ²)=PQ²/(PQ*d)²=1/d²=1/[a²b²/(a²+b²)]

    =(a²+b²)/(a²b²)=1/a²+1/b²