1、以A为原点,分别以AB、AD、AP正方向为X、Y、Z轴建立空间坐标系,A(0,0,0),B(√6,0,0),C(√6,3,0),
D(0,3,0),E(√6/2,0,0),F(0,3/2,3/2),P(0,0,3),
设平面PCE法向量n=(x1,y1,1),
向量PE=(√6/2,0,-3),
向量CE=(-√6/2,-3,0),
向量AF=(0,3/2,3/2),
∵法向量n⊥平面PEC,
∴法向量n⊥PE,法向量n⊥CE,
√6/2x1-3=0,x1=√6,
-√6x1/2-3y1=0,y1=-1,
法向量n=(√6,-1,1),
向量AF•n=0-3/2+3/2=0,
∴向量AF⊥法向量n,
∵AF不在平面PEC上,
∴AF//平面PEC.
2、向量PF=(0,3/2,-3/2),|PF|=3√2/2
|n|=√(6+1+1)=2√2,
向量n•PF=0-3/2-3/2=-3,
设法向量n和PF夹角为θ1,
cosθ1=n•PF/(|n|*|PF|=-3/(2√2*3√2/2)=-1/2,
因是钝角,故取其补角θ,cosθ=1/2,
F至平面PCE距离d=|PF|*cosθ=(3√2/2)*1/2=3√2/4.
3、向量FC=(√6,3/2,-3/2),
|FC|=√30/2,
平面PCE法向量n=(√6,-1,1),
向量FC•n=6-3/2-3/2=3,
设向量FC和n夹角为α,
cosα= FC•n/(|FC|*|n|)
=3/[(√30/2)*2√2]=√15/10,
sinα=√[1-(cosα)^2]=√85/10,
直线FC与平面PCE所成角的正弦值为√85/10.