解得x(t)=e^(-x)·(C1·cos((√5/5)x) + C2·sin((√5/5)x) )
当x→∞(正或负)时,x(t)→∞.
f(t)=[x(t)]^2/[1+x(t)^4]
=1 / { 1/[x(t)]^2 + [x(t)]^2 }
1/[x(t)]^2 + [x(t)]^2 ≥ 2,
因此 f(t)≤ 1/2
解得x(t)=e^(-x)·(C1·cos((√5/5)x) + C2·sin((√5/5)x) )
当x→∞(正或负)时,x(t)→∞.
f(t)=[x(t)]^2/[1+x(t)^4]
=1 / { 1/[x(t)]^2 + [x(t)]^2 }
1/[x(t)]^2 + [x(t)]^2 ≥ 2,
因此 f(t)≤ 1/2