1.
f(x)=sin(2x+6/π)+2sin^2 x
=(√3/2)sin2x+(1/2)cos2x+1-cos2x
=(√3/2)sin2x-(1/2)cos2x+1
=sin(2x-π/6)+1
所以f(x)的最小正周期为π;
2.
2x-π/6=π/2+2kπ ,k∈Z
即x=π/3+kπ ,k∈Z
f(x)=sin(2x-π/6)+1最大值为2,
x 的取值集合为{x|x=π/3+kπ ,k∈Z}
3.
-π/2+2kπ≤2x-π/6≤π/2+2kπ,k∈Z时
即-π/6+kπ≤x≤π/3+kπ ,k∈Z时f(x)单调递增;
π/3+kπ≤x≤5π/6+kπ ,k∈Z时f(x)单调递减;
区间为……
(注:“/”为分号,左边为分子,右边为分母)