1、可以判定,A,B是通过P点的抛物线的弦,设A(x,x^2)(x=2
已知抛物线y=x^2上两点A、B满足向量AP=λ向量PB(λ>0)其中点P的坐标为(0,1),向量OM=向量OA+向量O
2个回答
相关问题
-
已知向量OA=(根号3,0),o为坐标原点,动点M满足:|向量OM+向量OA|+|向量OM-向量OA|=4
-
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量O
-
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量
-
O是平面上一点,A,B,C是平面上不共线三点,动点P满足向量OP=向量OA+λ((向量AB+向量AC),λ∈[0,1/2
-
已知圆O:x^2+y^2=4内一点P(0,1),过点P的直线l交圆O于A,B两点,且满足向量AP= λ向量PB
-
向量OA(根号6,0),向量OB(0,根号3) 向量OM= λ 向量OA+ μ 向量OB且λ^2-μ^2=1
-
高手进,急需!抛物线!设λ>0,点A得坐标为(1,1),点B在抛物线y=x²上运动,点Q满足向量BQ=λ向量Q
-
抛物线y^2=2x,设A、B是抛物线上不重合的两点,且OA向量垂直OB向量,OM向量=OA向量+OB向量,O为坐标原点,
-
已知△ABC中,向量AB=a,向量AC=b,对于平面ABC上任意一点O,动点P满足向量OP=向量OA+λa+λb,试问动
-
高手进,急需!设λ>0,点A得坐标为(1,1),点B在抛物线y=x²上运动,点Q满足向量BQ=λ向量QA,