把不等式右边的式子化成3/4(x+y)+3/4(x+z)+3/4(y+z)
左边还是根号(x^2+xy+y^2)+根号(x^2+xz+z^2)+根号(y^2+yz+z^2)
接下来分别证明 根号(x^2+xy+y^2)>3/4(x+y)
根号(x^2+xz+z^2)>3/4(x+z)
根号(y^2+yz+z^2) >3/4(y+z)
就可以了
把不等式右边的式子化成3/4(x+y)+3/4(x+z)+3/4(y+z)
左边还是根号(x^2+xy+y^2)+根号(x^2+xz+z^2)+根号(y^2+yz+z^2)
接下来分别证明 根号(x^2+xy+y^2)>3/4(x+y)
根号(x^2+xz+z^2)>3/4(x+z)
根号(y^2+yz+z^2) >3/4(y+z)
就可以了