化简得 an/(2n+1)-a(n-1)/(2n-1)=8n^2/(4n^2-1)=2+[1/(2n-1)-1/(2n+1)]
设bn=an/(2n+1)
则b(n-1)=a(n-1)/(2n-1) b1=a1/3=5/3
bn-b(n-1)=2+[1/(2n-1)-1/(2n+1)]
b(n-1)-b(n-2)=2+[1/(2n-3)-1/(2n-1)]
.
b2-b1=2+(1-1/3)
叠加bn-b1=2n+[1-1/(2n+1)]
bn=2n-1/(2n+1)+8/3
an=(2n+1)bn=4n^2+22n/3+5/3