数列1/1*2+1/2*3+…+1/n(n+1)
的sn=1-1/2+1/2-1/3+----+1/n-1/(n+1)=1-1/(n+1)
1-1/(n+1)中的1-是怎么得出的?1/n- 的n取1吗,
你不用理解的这么复杂:
Sn=(1-1/2)+(1/2-1/3)+...+(1/n-1-1/n)+(1/n-1/n+1)=1+(-1/2+1/2)+(-1/3+1/3)+...+(-1/n+1/n)-1/n+1
=1-1/(n+1)
数列1/1*2+1/2*3+…+1/n(n+1)
的sn=1-1/2+1/2-1/3+----+1/n-1/(n+1)=1-1/(n+1)
1-1/(n+1)中的1-是怎么得出的?1/n- 的n取1吗,
你不用理解的这么复杂:
Sn=(1-1/2)+(1/2-1/3)+...+(1/n-1-1/n)+(1/n-1/n+1)=1+(-1/2+1/2)+(-1/3+1/3)+...+(-1/n+1/n)-1/n+1
=1-1/(n+1)