∵tan∠AOB=BC/OA=√3/3,∴∠AOB=30°,
作C关于OB的对称点D,过D作DE⊥X轴于E,连接CD,
则∠COD=2∠AOB=60°,OD=OC,
∴ΔOCD是等边三角形,
∴OE=1/2OC=1/4,DE=√3OE=√3/4,
∴D(1/4,√3/4),
设直线AD解析式:Y=KX+b,得方程组:
0=3K+b
√3/4=1/4K+b
解得:K=-√3/11,b=3√3/11,
∴Y=-√3/11X+3√3/11,
∵P在OB上,令X=√3Y,(易得OB解析式Y=√3/3X)
Y=-3/11Y+3√3/11,
解得:X=9/14,Y=3√3/14,
∴P(9/14,3√3/14)时,PA+PC最小.