2(3+1)(3^2+1)(3^3+1)(3^4+1)(3^8+1)+1
2个回答
如果题目是:2(3+1)(3^2+1)(3^4+1)(3^8+1)+1
则
原式=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)+1
=(3^16-1)+1
=3^16.
相关问题
2(3+1)(3+1)(3∧4+1)(3∧8+1)…(3∧64+1)+2=
a1=1/1*2*3+1/2=2/3; a2=1/2*3*4+1/3=3/8,a3=1/3*4*5+1/4=4/15``
(3+1)(3^2+1)(3^4+1)(3^8+1)=?
[(1+3)(1+3^2)(1+3^4)(1+3^8).(1+3^32)+1/2]3*3^2*3^3*……*3^10=多
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
1.(3+1)*(3^2+1)*(3^4+1)*(3^8+1)*……*(3^32+1) =
计算:2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
2/3-1/8-1/6= 1/3+2/5+4/15= 1/4+2/5+3/20= 1-3/4-1/8= 4/5-1/3-
1/1+(1/2-2/1)+(1/3-2/2+3/1)+(1/4-2/3+3/2-4/1)+.+91/9-2/8=3/7