tanα/(tanα-1)=-1
∴tanα=1/2
sin²α+sinαcosα+2
=(sin²α+sinαcosα+2sin²α+2cos²α)/(sin²α+cos²α)
=(3sin²α+2cos²α+sinαcosα)/(sin²α+cos²α)
=(3tan²α+2+tanα)/(tan²α+1)
=(3/4+2+1/2)/(5/4)
=13/5
tanα/(tanα-1)=-1
∴tanα=1/2
sin²α+sinαcosα+2
=(sin²α+sinαcosα+2sin²α+2cos²α)/(sin²α+cos²α)
=(3sin²α+2cos²α+sinαcosα)/(sin²α+cos²α)
=(3tan²α+2+tanα)/(tan²α+1)
=(3/4+2+1/2)/(5/4)
=13/5