答:
原式
=limx→0 e^((lncosx)/x^2)
=e^(limx→0 (lncosx)/x^2)
0/0型,可用洛必达法则:
=e^(limx→0 [-sinx/(cosx)]/(2x))
因为x→0,所以sinx/x=1,-sinx/(2x)=-1/2
=e^(limx→0 -1/(2cosx))
=e^(-1/2)
=1/√e
答:
原式
=limx→0 e^((lncosx)/x^2)
=e^(limx→0 (lncosx)/x^2)
0/0型,可用洛必达法则:
=e^(limx→0 [-sinx/(cosx)]/(2x))
因为x→0,所以sinx/x=1,-sinx/(2x)=-1/2
=e^(limx→0 -1/(2cosx))
=e^(-1/2)
=1/√e