若lim(5n+4)a[n]=5,求lima[n]和limna[n]
1个回答
显然a(n)~1/n
所以lima[n]=0,limna[n]=1
相关问题
求lim(n→∞)时[5^n-4^(n-1)]/5^(n+1)+3^(n+2)
当n→∞时,求lima^nn!/n^n,(a
求极限 lim(n→∞)[根号(n^2+4n+5)-(n-1)] =
若a≠-2,求(n→∞)lim(2^n-a^n)/[2^n+a^(n+1)]
求lim(4n^2-5n-1)÷(7+2n-8n^2)
求解lim(5n²+3n+1)/(n³+n²+5)
数列{a n }的前n项和记为S n ,已知a n =5S n -3(n∈N)求 lim n→∞ (a 1 +a 3 +
lim(n→∞)√(3^n)/(n*2^n)和lim(n→∞)√(n^2)/(3^n)求极限,
lim [√(3n+1)-√(3n)] /[√(5n+1)-√(5n)]
证lima^n/n!=0(n→无穷大)