解题思路:(1)平行四边形的对边相等,对角相等,即∠B=∠D,AB=CD,根据已知给出的∠BAE=∠DCF,可证明两个三角形全等.
(2)可先证明四边形AECF中对角线的关系,根据AC⊥EF,从而判断出到底是什么特殊的四边形.
(1)∵在平行四边形ABCD中,
∴∠B=∠D,AB=CD,
又∵∠BAE=∠DCF.
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴BE=DF,
∴BC-BE=AD-FD,
∴EC=AF,
∵AD∥BC,
∴∠FAC=∠ECA,∠CEF=∠AFE,
∴△AOF≌△COE,
∴AO=CO,EO=FO,
又∵AC⊥EF,
∴四边形AECF是菱形.
点评:
本题考点: 平行四边形的判定与性质;全等三角形的判定与性质;菱形的判定.
考点点评: 本题考查了平行四边形的判定和性质,平行四边形的对边平行且相等,对角相等,全等三角形的判定和性质,菱形的判定.