已知二次函数f(x)=x2+ax+c,满足不等式f(x)<0的解集是(-2,0),

1个回答

  • (Ⅰ)∵不等式f(x)=x2+ax+c<0的解集是(-2,0),

    ∴-2,0是方程x2+ax+c=0的两个实数根.

    由韦达定理得

    −2+0=−a

    −2•0=c,解得

    a=2

    c=0,

    ∴f(x)=x2+2x;

    (Ⅱ)∵点(an,an+1)(n∈N*)在函数f(x)的图象上,∴an+1=an2+2an,

    (ⅰ)an+1+1=an2+2an+1=(an+1)2,

    ∴lg(an+1+1)=lg(an+1)2=2lg(an+1),

    即bn+1=2bn

    ∴数列{bn}为等比数列;

    (ⅱ)由(ⅰ)知b1=lg(a1+1)=2,公比为2,

    ∴bn=2•2n−1=2n;

    又cn=nbn=n•2n,

    ∴Sn=1•21+2•22+3•23+…+(n−1)•2n−1+n•2n,

    2Sn=,1•22+2•23+…+(n−1)•2n+n•2n+1,

    错位相减得:−Sn=1•2