(Ⅰ)∵不等式f(x)=x2+ax+c<0的解集是(-2,0),
∴-2,0是方程x2+ax+c=0的两个实数根.
由韦达定理得
−2+0=−a
−2•0=c,解得
a=2
c=0,
∴f(x)=x2+2x;
(Ⅱ)∵点(an,an+1)(n∈N*)在函数f(x)的图象上,∴an+1=an2+2an,
(ⅰ)an+1+1=an2+2an+1=(an+1)2,
∴lg(an+1+1)=lg(an+1)2=2lg(an+1),
即bn+1=2bn,
∴数列{bn}为等比数列;
(ⅱ)由(ⅰ)知b1=lg(a1+1)=2,公比为2,
∴bn=2•2n−1=2n;
又cn=nbn=n•2n,
∴Sn=1•21+2•22+3•23+…+(n−1)•2n−1+n•2n,
2Sn=,1•22+2•23+…+(n−1)•2n+n•2n+1,
错位相减得:−Sn=1•2