勾股定理的证明要带图,越多越好

1个回答

  • 这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的.路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式. 有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证).

    【证法1】(梅文鼎证明)

    作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即 ∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2 【证法2】(项明达证明)

    作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP‖BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP‖BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°. ∵ ∠QBM + ∠MBA = ∠QBA = °, ∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2

    【证法3】(赵浩杰证明)

    作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB = ∠CFD = 90°, ∴RtΔCJB ≌ RtΔCFD , 同理,RtΔABG ≌ RtΔADE, ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE ∴∠ABG = ∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, 所以a^2+b^2=c^2

    【证法4】(欧几里得证明)

    作三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, ∵ ΔFAB的面积等于, ΔGAD的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ 即a的平方+b的平方=c的平方

    【证法5】欧几里得的证法

    《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立. 设△ABC为一直角三角形,其中A为直角.从A点划一直线至对边,使其垂直于对边上的正方形.此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等. 在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等.(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半. 任意一个正方形的面积等于其二边长的乘积. 任意一个四方形的面积等于其二边长的乘积(据辅助定理3). 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形. 其证明如下: 设△ABC为一直角三角形,其直角为CAB. 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH. 画出过点A之BD、CE的平行线.此线将分别与BC和DE直角相交于K、L. 分别连接CF、AD,形成两个三角形BCF、BDA. ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H. ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC. 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC. 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD. 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC. 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2. 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2. 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2. 此证明是于欧几里得《几何原本》一书第1.47节所提出的

    《周髀算经》中勾股定理的公式与证明

    《周髀算经》算经十书之一.约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法.唐初规定它为国子监明算科的教材之一,故改名《周髀算经》. 首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二) 而勾股定理的证明呢,就在《周髀算经》上卷一[2] —— 昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?” 商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一.故折矩,以为句广三,股修四,径隅五.既方之,外半其一矩,环而共盘,得成三四五.两矩共长二十有五,是谓积矩.故禹之所以治天下者,此数之所生也.” 周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来.于是商高以勾股定理的证明为例,解释数学知识的由来. 《周髀算经》证明步骤“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一.”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表). “故折矩①,以为句广三,股修四,径隅五.”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五). “②既方之,外半其一矩,环而共盘,得成三四五.”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形. “两矩共长③二十有五,是谓积矩.”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和.因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方. 注意: ① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角.古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形. ② “既方之,外半其一矩”此句有争议.清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”.经陈良佐[3]、李国伟[4]、李继闵[5]、曲安京[1]等学者研究,“既方之,外半其一矩”更符合逻辑. ③ 长指的是面积.古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”.赵爽注称:“两矩者, 句股各自乘之实.共长者, 并实之数. 由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明).所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明. 其实不然,摘录赵爽注释《周髀算经》时所做的《句股圆方图》[2]——“句股各自乘, 并之为弦实, 开方除之即弦.案:弦图又可以句股相乘为朱实二, 倍之为朱实四, 以句股之差自相乘为中黄实, 加差实亦成弦实.” 赵爽弦图注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明. 下为赵爽证明—— 青朱出入图三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方.以盈补虚,将朱方、青方并成弦方.依其面积关系有a^2+b^2=c^2.由于朱方、青方各有一部分在玄方内,那一部分就不动了. 以勾为边的的正方形为朱方,以股为边的正方形为青方.以盈补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c……2 ).由此便可证得a^+b^2=c^2;