BE、DF 平行
原因:
因为 四边形 内角和=360°
所以 ∠ADC+∠AEC=360-∠A-∠C=180°
又 BE、DF分别平分∠ABC、∠ADC
所以 ∠ADF+∠ABE=(∠ADC+∠AEC)/2=90°
而 在Rt△ADF中,∠ADF+∠AFD=90°
所以 ∠ABE=∠AFD=90°-∠ADC/2
所以 BE‖DF (同位角相等,两直线平行)
BE、DF 平行
原因:
因为 四边形 内角和=360°
所以 ∠ADC+∠AEC=360-∠A-∠C=180°
又 BE、DF分别平分∠ABC、∠ADC
所以 ∠ADF+∠ABE=(∠ADC+∠AEC)/2=90°
而 在Rt△ADF中,∠ADF+∠AFD=90°
所以 ∠ABE=∠AFD=90°-∠ADC/2
所以 BE‖DF (同位角相等,两直线平行)