设y=x²+ax+a-2与x轴有2个交点x1,x2,
且x1<x2,
有x2-x1=2√5(1)得(x2-x1)²=20,
x1+x2=-a (2)得(x1+x2)²=a²
x1·x2=a-2 (3)得4x1x2=4a-8,
得:(x1-x2)²=x1²-2x1x2+x2²
=x1²+2x1x2+x2²-4x1x2,
=(x1²+x2)²-4x1x2,
∴20=a²-4a+8,
即a²-4a-12=0,
(a-6)(a+2)=0,
∴a1=6,a2=-2.
设y=x²+ax+a-2与x轴有2个交点x1,x2,
且x1<x2,
有x2-x1=2√5(1)得(x2-x1)²=20,
x1+x2=-a (2)得(x1+x2)²=a²
x1·x2=a-2 (3)得4x1x2=4a-8,
得:(x1-x2)²=x1²-2x1x2+x2²
=x1²+2x1x2+x2²-4x1x2,
=(x1²+x2)²-4x1x2,
∴20=a²-4a+8,
即a²-4a-12=0,
(a-6)(a+2)=0,
∴a1=6,a2=-2.