1,∵△ACD∽△ABC,∴b ∕ h=c ∕ a,即a﹡b=h﹡c,即a²﹡b²=h²﹡c²,∵c²=a²+b²,∴a²﹡b²=h²﹡a²+h²﹡b²,∴1 ∕ a²+1 ∕ b²=1 ∕ h²
2,∵(a﹢b)²=a²+b²+2ab=c²﹢2hc,(c+h)²=c²+h²+2hc,∴(c+h)²‐(a+b)²=h²>0,∴a﹢b<c+h
3,∵(a﹢b)²﹢h²=(h﹢c)²,所以是RT△
1,∵△ACD∽△ABC,∴b ∕ h=c ∕ a,即a﹡b=h﹡c,即a²﹡b²=h²﹡c²,∵c²=a²+b²,∴a²﹡b²=h²﹡a²+h²﹡b²,∴1 ∕ a²+1 ∕ b²=1 ∕ h²
2,∵(a﹢b)²=a²+b²+2ab=c²﹢2hc,(c+h)²=c²+h²+2hc,∴(c+h)²‐(a+b)²=h²>0,∴a﹢b<c+h
3,∵(a﹢b)²﹢h²=(h﹢c)²,所以是RT△